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\ EXECUTIVE SUMMARY

" This study examines implementation of a spatial aggregation
algorithm on a hypercube and a shared memory machine with special
attention given to data partitioning. The differences in
implementation of the algorithm are due to data partitioning, data
dependence, and communication between processors. Two parallel
machines were used: The Cal Tech-JPL Mark II Hypercube, and the
Sequent Balance at the Advanced Computing Research Facility at
Argonne National Laboratory. The hypercube 1is a 32 node
concurrent processor consisting of 32 identical processors linked
by a communications network. The Sequent Balance is a high-
performance, general-purpose computer system that uses 2 to 12
National Semi-conductor Series 32000 CPUs in a tightly-coupled
multi-processing architecture. This study indicates that task
oriented algorithms with a low degree of data interdependence are

better suited to a shared memory implementation and data-driven
7 L. . N
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algorithms to a hypercube implementation. “«.
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1. INTRODUCTION
1.1 PURPOSE

. " The purpose of this document is to detail a study of
concurrent processing by the Concurrent Processing Subgroup of the
U.S. Army 1Intelligence Center and Schcol (USAICS) Software
Analysis and Management System (USAMS) task in association with
the Advanced Computing Research Facility (ACRF) at Argonne
National Laboratory (ANL). The study centered on the effect of
different concurrent architectures (hypercube and shared memory)
on Intelligence and Electronic Warfare (IEW) algorithm
performance. RPN VAN

1.2 INITIZL PROPOSAL

Increas.ng data rates and a growing diversity of IEW
information sources create a void in current intelligence analysis
methcds. New ways are needed to quickly correlate and aggregate
information being received from different types of sources (e.g.
radar, imagery, and eyewitness reports).

The immediate need for intelligence analysis systems which
process information more rapidly was addressed by examlnlng
applications of data distribution techniques to an existing
aggregation algorithm. Since Jet Propulsion Laboratory (JPL) /
USAMS has access to many of these unclassified algorithms, one was
chosen and implemented on the Caltech/JPL Hypercube and VAX 11/780
(development machine) and an ACRF shared memory computer, the
Sequent Balance.

1.3 CONCURRENT PROCESSING APPLICATIONS

Parallel processing lends itself to certain types of
applications. 1In order to exploit the use of many processors in
an application, several issues must be addressed. One issue is
identifying the dependencies between data structures and modules
If the degree of data dependence is large, the application is more
suited to sequential processing than to parallel processing. A
small number of data dependencies between modules indicates that
the algorithm lends itself to parallel processing because modules
do not have to rely on other modules and data structures for their
information. [Ref. 3] Computations within each module and
communication between modules proceed independently.

The best hardware for an appllcatlon depends partly on the
answer to this data dependency issue. This requlres mapping the
problem onto a variety of parallel architectures in order to find
a good match for the specific application. [Ref. 3]




algorithm onto hypercube and shared memory architectures. The
algorithm was previously used in a "production" mode on sequential
machines cuch as the CDC 6600, and on a vector processor

(the CRAY I).
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2. ALGORITHM DESCRIPTIONS
2.1 INTRODUCTION

Most algorithms that spend a substantial time in calculations
can be modified to run faster and more efficiently on
multiprocessors. If the data set is partitionable (able to be
grouped into separate portions in a meaningful way), it is likely
that parallel processing can speed up computation time. This is
the aspect of algorithms that we are focusing on.

For each T"candidate algorithm", the data set and its
interaction with the data structures needs to be analyzed. If the
data set can be meaningfully partitioned into smaller, distinct
sets, clusters of associated data points can be sent to processing
elements (PEs) and the data can be processed by the algorithm in
parallel. If a section of the algorithm that spends a lot of time
in computation can be isolated, then the PEs can each concurrently
work on the computation using the available data sets. These are
two of the areas of interest when implementing an algorithm on a
parallel architecture.

2.2 AGGREGATION ALGORITHM
2.2.1 INTRODUCTION

The algorithm that watc chosen for this study was an
aggregation algorithm. It uases a computationally intensive
mathematical criterion to decide which points in two dimensional
space belong together in a cluster and locates the "value center"
of the cluster. The algorithm is used because:

(1) it is used in real military simulation studies:

(2) it performs a function equivalent to aggregating
individual sighted objects (e.g. radios, trucks,
helicopters); and

(3) analysis on the uniprocessor for which it was
originally designed showed that 70% of the CPU
time is spent in one numeric calculation. This
calculation is performed repeatedly, usually on
independent data sets, making the algorithm a
good candidate for parallel implementation.

2.2.2 DESCRIPTION

The goal of the application program (using the aggregation
algorithm) is to partition the input data points into separate
clusters. For each individual cluster, a value center is

3

P A P AN P e A T A A S R VLN ] S 2T AR AR A MM R P R P AP e T T A R b R AR TN




FETE W W TETIRTE W W W T WA WRTW ATV WAV T 7 W T TS T W s T AT e T e - TR AR

15 %0
3
i
3
[
b
b
3
A

Ha e At

determined to maximize a given value function.

A pre-partitioned data set with distinct, disjoint groups of
points was used for this initial implementation. The data
partitions fall into distinct groups, thus clustering can be done
in parallel. Each data set is sent to a PE point by point. When
all points have been loaded on the PE, the clustering process
begins. A cluster is a group of points that fall within an R-
ball (radius-ball) cof the center point. Each point is tried as a
center point and a cluster is determined by using a precalculated
radius. The next step is to determine what other points within
the PE fall into the cluster. The number of clusters are
minimized by checking for redundancy (small cluster contained in
larger cluster) to determine which contain unique points.

(See Figure 1)
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The nonredundant clusters are fed to a simplex (polytope)

o maximization routine which uses a value function to calculate the
Q value center of each cluster. Each PE, in *urn wil) return a
% value center and its associated value for each cluster ,See Figure
é 2). This part of the program is the most time consuming for a
sequential procecsor.
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3. ARCHITECTURE DESCRIP' .ONS

3.1 INTRODUCTION

The aggregation algorithm was implemented on two computers:

the Caltech/JPL Mark II Hypercube, and
the Argonne National Laboratory Sequent Balance.

The Mark II Hypercube uses a "hypercube" architecture and the
Sequent Balance uses a '"shared memory" architecture. Each
computer will be discussed separately.

3.2 HYPERCUBE

The Caltech/JF.. Mark II Hypercube (Cube) is a Multiple
Instruction Multiple-Data (MIMD) machine which uses an N-cube
interconnection network to link processing elements (nodes), each
with its own Central Processing Unit (CPU) and memory.

Cubes come in configurations of 2D nodes. Each node is
connected to n other nodes in an n-cube configuration and
therefore communication between nodes requires at most n hops or
the use of n-1 intermediate nodes. The n-cube connection is
realized by considering the binary representations of each node.
Two nodes are connected if their binary representation differ by
one bit. For example, given a 3-cube, cr 2**3=8 node cube, node 0
(000) is connected to node 1 (001), node 2 (010) and node 4 (100).
To pass information from node 0 (000) to node 6 (110) would take
two hops and use one intermediate node. Two possible paths that
exist include the path of nodes (0 2 6) and (0 4 6).

The Mark II cube has 32 nodes. Each node consists of an
8086/8087 processor pair and 256K bytes of memory. The CPU speeds
are .5 MIPS and .030 - .040 Mflops per node. Transfer rates
between channels is about 8 Mb/s.

The cube that was currently available for general development
was the Mark II cube on the Caltech Net (CITNET). This net
includes the LOGOS VAX 11/750 connected via CITNET to Miranda, the
intermediate host (IH) of the cube. 1LOGOS acts as the development
machine, where developers code, compile, and test using a
simulator, and ultimately download crosscompiled code to the cube
via Miranda.

Two merits of a cube-connected architecture are as follows:
First, it is considered a good "in between"
connection architecture. By this is meant that both the
maximum distance between n'des and the number of
connections per node scale s a function of log(m),

5
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where m is the number of nodes. In addition, the
internal bandwidth of the machine increases faster than
the number of nodes, the formula for connections being
m*log(m)/2.

Second, mesh connections up to and including the
dimensions of the cube can be realized allowing for
easier parallel algorithm development.

3.3 B8EQUENT BALANCE

The Balance 8000 is an expandable, high-performance, general
purpose computer system that employs from 2 to 12 National
Semiconductor Series 32000 CPU’s in a tightly coupled
multiprocessing architecture. The operating system, DYNIX, is a
version of UNIX 4.2bsd that has been enhanced to support
multiprocessing and to run on Series 32000 CPUs. [Ref. 5] The
CPU’s run at 10 MHz and may have their own local cache memory.
Primary memory, which is shared by all CPU’s, may be up to 26
Mbytes. The primary memory, all CPU’s and all peripheral
subsystems are connected via the SP8000 bus which has a maximum
bandwidth of 26.67 Mbytes per second.

Being based on UNIX, multiprocessing is achieved by managing
a queue of prioritized processes. The shared memory is a global
resource which holds a single copy of the operating system, with
the balance of the shared memory being assigned dynamically by
page to individual processes. Scheduling of the processes for
execution proceeds in a UNIX fashion, except that instead of a
single CPU, a pool of CPU’s is available for execution.

The CPU’s are considered symmetric in that any processing in
any state can execute on any available CPU. The system
dynamically assigns processes to CPU’s, balancing the 1load to
take best advantage of each CPU. The shared memory concept
allows an application developer to design an algorithm based on a
queue of tasks to be performed. All tasks without
interdependancies can then be executed in parallel, increasing
throughput.




4. ALGORITEM IMPLEMENTATION
4.1 INTRODUCTION

Implementation of the aggregation algorithm was done on the
two parallel architectures described above. Each implementation
used the inherent features of this underlying architecture. 1In
particular, the down-loading of data, data partitioning, and data
dependency were different.

In working with the aggregation algorithm, it was discovered
that the problem demanded a task-oriented approach. In such an
approach, a larger problem is split up into smaller problems.
Both architectures handled this approach well, but the Balance is
architecturally more suited to task-oriented problems. The
ordering of tasks among the PE’s did not affect program
efficiency. The differences in implementation of the algorithm
are stressed in the following discussions.

4.2 HYPERCUBE IMPLEMENTATION
4.2.1 INPUT/OUTPUT DESCRIPTION

Applying a problem to the cube involves verifying that the
computational load for each node (or PE) is similar and that the
time for internode communication required by the algorithm is
minimized. Two programs are needed to run a problem on the cube.
The element (ELT) program resembles a sequential computer program
but invokes subroutine calls when it needs to communicate with
other processors or with the host VAX via theIntermediate Host
(IH) program. A copy of ELT executes on each node, whereas IH
runs cn the Intermediate Host machine.

Upon initializing the cube, each node is assigned a node
number. These numbers are used by the IH and the other nodes for
communication. When the IH communicates with the nodes or the
nodes communicate with themselves, a minimum amount of
information must be passed. A packet represents this information
and is a set of 8 contiguous bytes.

®

T

) When communication between the nodes or with the IH is
ﬁ{ desired, special commands for reading and writing are called.
o Other commands are available for communication between the nodes.

[Ref. 6]
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4.2.2 IMPLEMENTATION

[

Implementation of an algorithm on the cube requires that the
o database of points be downloaded onto the PE’s. Since the
Y database is pre-partitioned, there is no problem with 1load
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balancing. When there are an unknown number of points being
downloaded to the PE’s and there is no control over how many
points each of the PE’s get, then load balancing becomes an
issue. Downloading the data is accomplished with single-stream
execution. Once all data is 1loaded, all processors work in
parallel on their clusters using the aggregation algorithm. When
finished, each PE sends back their results to the IH, which
completes the job by reporting the results, again by single-
stream execution. (See Figure 3)

Data is distributed evenly to the PE’s, one point at a time.
One of the disadvantages of this method is the inability to
download a contiguous block of data to a single PE. This problem
was solved for this initial study by partitioning the data in
advance.

Each PE has a copy of the program to work on along with its
data cluster. It is important to note that while each PE is
executing in parallel (working on its cluster set), individual
clusters contained in the cluster sets are also being worked on.

After the computations are complete, the PE’s contain the
value centers of their assigned clusters. 1In order to send back
the points so that they will be interpreted correctly by the IH,
it is important that the data be "packaged" in the correct
format. Sending the address of the buffer containing the results
to the IH and allowing enough buffer space to receive all
information from each of the PE’s is crucial for receiving
results on the IH.

4.3 SEQUENT BALANCE IMPLEMENTATION

4.3.1 MONITORS

There are several solutions to problems inherent in a
parallel processing environment.

"One solution that is efficiently implementable in every
parallel environment is the concept of monitors. A
monitor is a conceptual abstraction composed of three
distinct parts: (1) the data that are shared, (2) the
operations that represent critical sections (sections of
code that can safely be executed by only a single
process at a time) associated with the shared data, and
(3) the code that is required to initialize the shared

structures. Only one process may be "in a monitor" at a
given time. This is achieved conceptually by setting a
lock at the point where the operation is entered and
releasing the lock at the point where the operation is
exited. The fundamental property of monitors is to

8
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ensure exclusive access to resources and to manage
synchronization requirements (waiting and signaling).
The higher-level synchronization primitives (locks,
ASKFOR monitor (see definitiones)) are implemented as
macros that invoke lower-level macros. A macro package
is available that uses macros to implement the basic
operations for each machine at the ACRF and for each
language. This provides a portable implementation of a
few of the high-level synchronization patterns yielding
l2ss complex code and smaller chance of error."

[Ref. 7 and 8]

4.3.2 IMPLEMENTATION

Our implementation utilizes the ASKFOR monitor. This

requires each PE to "ask for" the next available task to perform.
The monitor manages the pool of outstanding tasks. [Ref. 8] The
task at hand is to take a set of points (a cluster set) and to
group them into clusters. The value center of the cluster is
determined and written to a data structure in shared memory.
The data structure update is controlled by the lock/unlock
synchronization primitive (this ensures mutual exclusion). The
monitor gives each PE a task to complete. When one PE completes
its task, it receives another task to be performed. Each PE uses
the nonlinear optimization routine and the value function to
determine the value center for its cluster. (See Figure 4) The
downloading of data and setting up the data structures is
performed with single-stream execution. Processing of the data in
the computational part of the program is done in parallel.

The Balance downloads data in contiguous blocks to the PE’s.
This allows a partitioned data set to be efficiently distributed
amongst the PE’s. Since the Balance uses shared memory, access to
shared resources is a crucial issue. In order for each PE to
receive an "unique" cluster set, it is necessary to use the
synchronization primitive of 1lock/unlock to ensure exclusive
access to the shared data. The locking mechanism is also used
when the PE’s write the value centers of their clusters to the
result array shared by all PE’s.
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5. CONCLUSIONS

There are many possible ways to adapt existing sequential

algorithms to concurrent architectures. The approach taken
depends on both the type co¢f algorithm and the available
architecture. Despite differences in approaches, there exist

similarities in problems that 1lend themselves to parallel
processing. Data that is partitionable into distinct, meaningful
groups and computation intensive algorithms are two attributes of
a problem which allow it to efficientiy use concurrency.

The development of the data structures for the partitioned
data set and the downloading of the partitioned data to the PE’s
was easier and more straightforward in this initial pre-
partitioned case on the Sequent Balance shared memory machine than
on the cube. The use of monitors on the Balance and the
accessibility of memory eased implementation. I/0 was awkward
with the cube architecture, but some of those problems are
rectified in the new Mark III Hypercube.

Since the Balance relies on shared memory, data dependence is
an important issue. The accessibility of resources and data
structures is controlled by monitors and locks. This is not
necessary with the cube. Separate data structures for each
processing element are necessary for parallel processing of the
algorithm on the Hypercube. Thus, this implementation indicated
that task oriented algorithms are more suited for the Sequent
Balance as long as the data has a low degree of interdependence,
and the Hypercube is better suited for algorithms that 1lend
themselves to data driven implementations. Clearly, with readily
partitionable data, shifting the intensive computation to
concurrently processing PE’s 1is more efficient than sequential
processing. Data partiticning is the key for both
implementations. Since partitioning is done sequentially in a
preprocessing phase, little is gained by either implementation if
partitioning is "too difficult". 1In particular, this would be the
case if the data ©partitioning problem is equivalent in
computational complexity to the non-linear optimizations performed
in the PE’s. You have mearly backzd the problem up to its dual.
The next step of this research is to study the mapping of this
dual problem into the architectures.
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APPENDIX A

GLOSSARY

The following is a list of terms as used in this report.

Process - synonymous with task. It is an autonomic unit of
activity in a computer system.

Sequential Process - an entity that executes a series of tasks on
a uni-processor (a computer with one central processing
unit). This entity usually consists of a data structure and
a sequential program that operates on it. [Ref. 1] Within
the sequential program, statements are executed one by one.
The results of program execution with the same data set is
always the same; there is no program speed up as long as the
operations are carried out in the same sequence. [Ref. 1]
This is not true of a concurrent process.

Concurrent Process - more than one process working on a single
problem at the same time. Concurrent Processing includes
both Parallel Processing and Distributed Processing.

Multiprocessing - executing more than one process by switching
back and forth between the processes.

Parallel Processing - several processes executing at the same
time on one or more different problems. This usually
happens on a multiprocessor architecture, where several

. autonomous processors can each execute separate programs.

Shared Memory - an area of memory that is used by more than one
processor.

-
Ry

Data Dependency - when data produced by one part of a concurrent
process is used by another part. [Ref. 2]

Algorithm - a precise method usable by a computer for the
solution of a problem. It is composed of a finite set of
steps, each of which may require one or more operations.
[Ref. 4)
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Cluster - a term that refers to a group of points that fall
within an r-ball (radius-ball) of the center point of the
group.

Cluster Bat - a set of clusters.

Lock/Unlock - Provide mutual exclusion among processes (a shared
memory high-level synchronization pattern).
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Askfor Monitor - Cocordinate a pool of prccesses working on a pool
of subproblems (a shared memory high-level synchronization
pattern).

Uni-Processor Architecture - a computer with a single central
processing unit (CPU).

Multiprocessor Architecture - a computer with a number of
vrocessing elements (PE’s). -

Data Driven - Each CPU is dependent on the data that is fed to it
from other CPU’s. Tasks are assigned to CPU’s before the
algorithm is executed.

Task Oriented - The operating system dispatchs tasks as the CPU’s
become available.
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